Kruskal's algorithm
Kruskal's algorithm

Kruskal's algorithm is used to find the minimum/maximum spanning tree in an undirected graph (a spanning tree, in which is the sum of its edges weights minimal/maximal). The algorithm was devised by Joseph Kruskal in 1956.

Description

At first Kruskal's algorithm sorts all edges of the graph by their weight in ascending order. Than the procedure iteratively adds the edges to the spanning tree in such a way, that no cycle may occur (the procedure terminates after adding \\vert V-1 \\vert edges).

To ensure that there is no cycle in the graph, the procedure stores for each vertex its membership to a connected component using a disjoint-set data structure. The disjoint set offers two operations: union (merges two connected components) and find (determines connected component membership of the given node).

Complexity analysis

The asymptotic complexity of the algorithm is O( \\vert E \\vert \\log_{2}(\\vert E \\vert)), provided a comparison based algorithm is used to sort the edges. If we use a linear time sorting algorithm (e.g. counting sort) or the edges are already presorted, than the complexity of Kruskal's algorithm is O(\\vert E \\vert \\cdot \\alpha(\\vert E \\vert)), where \\alpha is the inverse Ackermann function (corresponds with the time complexity of union and find operations).

Code

/**
 * Kruskal's algorithm
 * @param graph graph
 * @param w weight vector of the edges
 * @return minimum spanning tree
 */
SpanningTree kruskalAlgorithm(Graph graph, weights w)
    SpanningTree tree 
    for Node n : graph do
        makeSet(n) //every edge is considered as a separate component
    List edges = sort(graph.getEdges(), w) //order the edges according to their weight in ascending order
    
    for Edge e in edges do
        if findSet(e.start) != findSet(e.end) //if the source and target are in different components, than we are not creating a cycle
            tree.add(e) //add the edge to the spanning tree
            union(e.start, e.end) //merge the connected components
            if tree.edgeCount() == graph.nodeCount() - 1 //if the spanning tree is complete
                break //terminate the algorithm
    return tree
/**
 * Kruskal's algorithm
 * @author Pavel Micka
 */
public class KruskalAlgorithm {
    /**
     * Finds the minimum spanning tree of the given grapg with n vertices (the vertices are numbered
     * 0, 1, ..., n-1)
     * @param edges edges of the undirected graph
     * @param nodeCount number of vertices (n)
     * @return minimum spanning tree
     */
    public static List<Edge> kruskalAlgorithm(List<Edge> edges, int nodeCount) {
        DisjointSet ds = new DisjointSet(nodeCount);
        List<Edge> spanningTree = new ArrayList<Edge>();
        Collections.sort(edges);
        int i = 0;
        while (i != edges.size() && spanningTree.size() != nodeCount - 1) {
            Edge e = edges.get(i);
            if(ds.find(e.getFrom()) != ds.find(e.getTo())){
                spanningTree.add(e);
                ds.union(e.getFrom(), e.getTo());
            }
            i++;
        }
        return spanningTree;
    }
}


// ***************************** //
// *      Data Structures      * //
// ***************************** //


/**
 * Edge of a undirected graph
 * @author Pavel Micka
 */
class Edge implements Comparable<Edge> {
    private int from; //from
    private int to; //to
    private int weight; //weight
    public Edge(int from, int to, int weight) {
        this.from = from;
        this.to = to;
        this.weight = weight;
    }
    /**
     * Compare to function (greater weight => is greater than)
     * @param o
     * @return
     */
    public int compareTo(Edge o) {
        if (this.getWeight() > o.getWeight()) {
            return 1;
        } else if (this.getWeight() < o.getWeight()) {
            return -1;
        } else {
            return 0;
        }
    }

    /**
     * @return the from
     */
    public int getFrom() {
        return from;
    }

    /**
     * @param from the from to set
     */
    public void setFrom(int from) {
        this.from = from;
    }

    /**
     * @return the to
     */
    public int getTo() {
        return to;
    }

    /**
     * @param to the to to set
     */
    public void setTo(int to) {
        this.to = to;
    }

    /**
     * @return the weight
     */
    public int getWeight() {
        return weight;
    }

    /**
     * @param weight the weight to set
     */
    public void setWeight(int weight) {
        this.weight = weight;
    }
}
/**
 * Implementation of the disjoint set structure
 * @author Pavel Micka
 */
class DisjointSet {

    private Node[] nodes;

    public DisjointSet(int nodeCount) {
        nodes = new Node[nodeCount];
        for (int i = 0; i < nodeCount; i++) {
            nodes[i] = new Node();
            nodes[i].id = i;
        }
    }

    /**
     * Unions sets, which contain vertices "a" and "b"
     * Union is always performed as merging "B" into "A"
     * @param a number of a node "a"
     * @param b number of a node "b"
     * @return number of a representative of the merged component
     */
    public int union(int a, int b) {
        Node repA = nodes[find(a)];
        Node repB = nodes[find(b)];

        repB.parent = repA;
        return repA.id;
    }

    /**
     * Returns representative of the compoment which contains the given node
     * @param a number of a node, whose representative we are looking for
     * @return number of the representative
     */
    public int find(int a) {
        Node n = nodes[a];
        int jumps = 0;
        while (n.parent != null) {
            n = n.parent;
            jumps++;
        }
        if (jumps > 1) repair(a, n.id);
        return n.id;
    }

    /**
     * Performs compression of the path
     * @param a
     * @param rootId
     */
    private void repair(int a, int rootId) {
        Node curr = nodes[a];
        while (curr.id != rootId) {
            Node tmp = curr.parent;
            curr.parent = nodes[rootId];
            curr = tmp;
        }
    }

    @Override
    public String toString() {
        StringBuilder builder = new StringBuilder();
        for (int i = 0; i < nodes.length; i++) {
            builder.append(find(i) + " ");
        }
        return builder.toString();
    }

    /**
     * Vertex of an n-ary tree
     */
    private static class Node {
        /**
         * Parent
         */
        Node parent;
        /**
         * Node id
         */
        int id;
    }
}

Sources

  • KOLÁŘ, Josef. Teoretická informatika. 2. edition. Praha : Česká informatická společnost, 2004. 205 p. ISBN 80-900853-8-5.

SEO od společnosti Digital Pylon


Online casino s algoritmem

České casino online online slot-vegas.cz

Hrajte nejlepší hry jako je GoodGame Empire.





Zajímavé články: Jak najít práci snů? Zvolte kariéru v IT!, Češi mají rádi hrací automaty online, Jak funguje algoritmické obchodování Casino, Online výuka Algoritmus a online marketing mají svá pravidla, Automaty, Matematický vliv, Ratings, Jak fungují algoritmy hazardních her online: více znalostí, více peněz, SYPWAI - nástroj pro vědecký vývoj, Vynikají na globálním trhu: Nejlepší vývojáři softwaru pro online výherní automaty, Jak si vybrat nejlepší české online casino, Proč byste měli hrát online casino VPN revoluce, Kde najdeme algoritmy v každodenním životě?, Čeká vás pracovní pohovor mimo město? Podívejte se, jak dokonale zvládnout včasný příchod, 5 úžasných technologií ze světa hazardních her, Mirror and access to Mostbet, Svou kancelář můžete mít stále po ruce, Jaké výhody má digitalizovaná firma oproti off-line konkurenci?, Jaký systém vybrat pro snadné řízení výroby?, Nahradí umělá inteligence ajťáky?, Důvody, proč používat SnapTik ke stahování videí TikTok, Dokonalý den na pláži: Co si vzít s sebou, aby byl výlet zábavný a bezpečný?, Jak přežít dlouhý let?, Go pay GoodGame Empire, Blockchain, Rozhovor, Umělá inteligence


Doporučujeme

Internet pro vaši firmu na míru

https://www.algoritmy.net